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Under sustained pumping, kinetics of macroscopic nonlinear bio-
chemical reaction systems far from equilibrium either can be in a
stationary steady state or can execute sustained oscillations about
a fixed mean. For a system of two dynamic species X and Y, the
concentrations nx and ny will be constant or will repetitively trace
a closed loop in the (nx, ny) phase plane, respectively. We study a
mesoscopic system with nx and ny very small; hence the occurrence
of random fluctuations modifies the deterministic behavior and the
law of mass action is replaced by a stochastic model. We show that
nx and ny execute cyclic random walks in the (nx, ny) plane whether
or not the deterministic kinetics for the corresponding macroscopic
system represents a steady or an oscillating state. Probability
distributions and correlation functions for nx(t) and ny(t) show
quantitative but not qualitative differences between states that
would appear as either oscillating or steady in the corresponding
macroscopic systems. A diffusion-like equation for probability P(nx,
ny, t) is obtained for the two-dimensional Brownian motion in the
(nx, ny) phase plane. In the limit of large nx, ny, the deterministic
nonlinear kinetics derived from mass action is recovered. The
nature of large fluctuations in an oscillating nonequilibrium system
and the conceptual difference between ‘‘thermal stochasticity’’
and ‘‘temporal complexity’’ are clarified by this analysis. This result
is relevant to fluorescence correlation spectroscopy and metabolic
reaction networks.

fluorescence correlation spectroscopy � limit cycle � nanobiochemistry �
nonequilibrium steady state � random walk

The past decade has witnessed rapid growth of a host of optical
methods for studying biochemical reactions on a mesoscopic

level. By mesoscopic we mean a system with one or a few reactant
molecules in a solvent. It is microscopic with respect to the
chemical reactants, but there are millions of molecules of the
aqueous solvent. Many of the new optical methods—e.g., single-
molecule enzymology (1, 2), single-molecule Raman scattering
(3), and single-particle tracking (4, 5) and detection (6)—can be
considered to derive conceptually from fluorescence correlation
spectroscopy (FCS) (7), which was initially developed three
decades ago (8, 9). The fundamental idea behind FCS is that one
can obtain kinetic information about a biochemical reaction by
observing microscopic concentration fluctuations (10) and can
deduce kinetic properties from a statistical analysis of the
stochastic ‘‘noisy’’ data. Although FCS was originally developed
for studying systems in equilibrium, it is also applicable to studies
of nonequilibrium steady-state (NESS) kinetics. The new optical
methods open up the possibility of directly measuring the
kinetics of mesoscopic chemical reaction systems far from equi-
librium. Of particular interest are systems that either reside in
steady states with constant reactant concentrations or execute
systematic oscillations. How is the distinction between the
oscillating and steady behavior influenced in mesoscopic systems
by the spontaneous fluctuations of the reactants?

FCS was originally developed in terms of a theory for linear
kinetics. This theory, in parallel with that for macroscopic fast
relaxation kinetics of chemical reactions (11, 12), is widely
applicable because the equilibrium concentration fluctuations

deviate from their macroscopic mean values only slightly. Re-
cently developed optical methods, however, allow measurement
of large fluctuations in mesoscopic systems that contain few
reactant molecules under NESS condition. This breakthrough in
laboratory technology on ‘‘living’’ biochemical systems immedi-
ately raises theoretical questions about the nature of concentra-
tion fluctuations in nonlinear biochemical reactions.

It is now well established that nonlinear chemical and bio-
chemical reactions can have sustained periodic oscillations in an
open system that exchanges reactant(s) and product(s) with
appropriate sources and sinks (13). One conceptual example is
the following simple reaction (14) derived from glycolysis (15)
and the Brusselator (16):

AL|;
k1

k�1

X, BO¡
k2

Y, 2X � YO¡
k3

3X [1]

in which A and B have fixed concentrations. In the present study,
we focus on chemical reaction systems in a ‘‘stirred vessel’’ and
completely neglect the molecular diffusion. Chemical reactions
that involve inhomogeneous concentrations in space will be
studied in a later work. The traditional macroscopic chemical
kinetics based on the law of mass action gives

�
dnx

dt
� k1nA � k�1nx � k3nx

2ny

dny

dt
� k2nB � k3nx

2ny ,

[2]

in which nx and ny are the numbers of X and Y molecules in the
reaction vessel. It can be shown (see Appendix I) that when

� �
k�1

3 �k2nB � k1nA�

k3�k1nA � k2nB�3 � 1 [3]

the reactions in the open system have a NESS:

nx
ss �

k1nA � k2nB

k�1
, ny

ss �
k2k�1

2 nB

k3�k1nA � k2nB�2 . [4]

By steady state, we mean the concentrations do not change with
time; by nonequilibrium, we mean there is a sustained nonzero
flux from B 3 Y 3 X 3 A. In reality, a cycle has to be
completed, since the sink and the source are to be ‘‘drained’’ and
replenished: moving A3B. The parameter � is a measure of the
amount of energy being ‘‘pumped’’ into the system. When � �
1 in Eq. 3, the system 1 oscillates with a defined period (Appendix
I). Then, if the system starts at the concentrations given in Eqs.
4, it will remain at those concentrations. If the reaction system
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starts at other concentrations, however, no matter how close they
are to the values in 4, it will eventually settle into oscillatory,
periodic kinetics. This is an important mathematical statement;
in reality, however, when � � 1 the unstable steady state (4) has
no relevance. If we visualize the reaction in the plane of (nx, ny),
the steady state corresponds to a single point; the periodic
oscillation corresponds to a closed loop (see Fig. 1), which is also
called a limit cycle (17).

What happens to the reaction system 1 when there are only
small numbers of reactant molecules so that there are significant
concentration fluctuations caused by thermal agitation? What
are the differences in the behavior of the mesoscopic system
when � � 1 and � � 1, conditions that elicit oscillatory or steady
behavior in macroscopic systems? How are the stochastic dy-
namics of the mesoscopic system related to those of its macro-
scopic counterpart? Can optical methods such as FCS detect
chemical oscillations from direct measurements of reactant
concentration fluctuations? More fundamentally, in the pres-
ence of significant thermal fluctuations, do periodic reactant

oscillations retain their identity in a mesoscopic system contain-
ing few reactant molecules?

This paper attempts to answer these general questions and to
illustrate features of mesoscopic NESS and oscillating systems by
using reaction 1 as an example. These issues have practical as well
as theoretical significance. With the intense interest in cellular
metabolic networks and their regulation after sequencing of the
human genome, noninvasive optical methods such as FCS are
beginning to provide novel approaches for investigating bio-
chemical networks both in vitro and in living cells (18–21).
Combined with experimental measurements of concentration
fluctuations based on FCS and related methods, the theory of
NESS for mesoscopic systems will become increasingly impor-
tant in biochemistry.

Our analysis is based on mathematical methods drawn from
nonlinear dynamics (14, 22), stochastic processes (23, 24), and
partial differential equations (25, 26). To facilitate the presen-
tation of this analysis to the general audience, we have summa-
rized the more mathematical material in appendices. Finally,
some biochemical systems can exhibit even chaotic behavior
(17). The role of molecular concentration fluctuations in these
systems is complex and its analysis is outside the scope of the
present work. Whether deterministic chaos retains its meaning
under molecular fluctuation is still controversial (27, 28). The
temporal complexity of a dynamical system depends on the
dimensionality of its phase space—i.e., on the number of variable
chemical components in the system. In systems with two-
dimensional phase space, sustained oscillation is possible but not
chaotic dynamics; this is the focus of our current analysis. For
systems with phase space dimension higher than 2, there is a
finite probability of nonrecurrence; this corresponds to chaotic
behavior in dynamical systems.

Stochastic Model for Nonlinear Biochemical Reaction
If the numbers of molecules of X and Y, nx and ny, participating
in the biochemical reaction 1 are small, one can no longer
describe the system in a deterministic fashion as having nx of X
and ny of Y at time t. Rather, one describes the stochastic system
by the probability of having nx X and ny Y at time t in terms of
a probability distribution function, P(nx, ny, t). The stochastic
kinetics can be depicted by the schematics shown in Fig. 2. At any
given time t, the system has the numbers of X and Y molecules
(nx, ny). The random variables nx and ny can change only by �1
or �1. Therefore, the stochastic kinetics of the reaction system,
moving on the grid points in Fig. 2, resembles a random walk on
the two-dimensional lattice (29). The stochastic f luctuations in
nx and ny are analogous to a Brownian motion in the (nx, ny)
plane introduced in the previous section (Fig. 1).

From each state (a grid point in Fig. 2) the system can undergo
transitions governed by specific rate constants to any of four
possible neighboring states. Therefore, writing the kinetic equa-
tion for this stochastic system is straightforward as for a first-
order reaction system, and one obtains the dynamic equation for
the probability distribution, equivalent to a concentration:

dP�nx, ny, t�
dt

� ��k1nA � k � 1nx � k2nB � k3nx�nx � 1�ny�P�nx, ny�

� k1nAP�nx � 1, ny� � k2nBP�nx, ny � 1�

� k�1�nx � 1�P�nx � 1, ny�

� k3�nx � 1��nx � 2��ny � 1�P�nx � 1, ny � 1�. [5]

In the theory of probability, this type of random-walk model with
variable rate constants is called a birth–death process, which is

Fig. 1. Two views of the force field F. The abscissa and ordinate scale are the
normalized numbers of molecules for X and Y: u 	 �nx, v 	 �ny. (A) a 	 0.1,
b 	 0.1. Thus (uss, vss) 	 (0.2, 2.5), � 	 0; the steady state is attractive. (B) a 	
0.08, b 	 0.1. Thus (uss, vss) 	 (0.18, 3.1), � 	 3.4: the steady state (the black dot)
is unstable. The closed loop is attractive when � � 1 (bifurcation).
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a special class of Markov process (23, 29). It is also known as a
stochastic compartmental system (30).

Just as a random walk can be approximately described by a
diffusion equation, Eq. 5 can also be approximated by a diffusion
equation with an anisotropic diffusion tensor D in a force field
F (Appendix II):

�P�u, v, ��

��
� 
 ��D
P � FP�, [6]

where

D �
�

2 �a � u � u2v � u2v
� u2v b � u2v� ,

F � �a � u � u2v � ��1�2 � 2uv � u2�2�
b � u2v � ��2uv � u2�2� � ,

[7]

in which u, v, �, a, and b are nondimensionalized nx, ny, t, nA, and
nB, respectively, and � 	 u�nx 	 v�ny. Note the diffusion here
is in the abstract phase space (Fig. 2) rather than real physical
space. The parameter � characterizes the ‘‘goodness’’ of the
diffusion (continuous) approximation for the (discrete) random
walk; it also links the microscopic stochastic model with its
macroscopic counterpart. For very large nx and ny, � 	 0 and Eq.
6 reduces to Eq. 2 (Appendix II). Therefore, the stochastic model
is a generalization that contains the traditional deterministic
kinetics as a limiting case. The stochastic model is not an
alternative to the deterministic kinetics, it is a more complete
kinetic description that is capable of modeling reactions with and
without fluctuations.

There is a competition between the first and second terms in
Eq. 6, representing the stochastic and the underlying determin-
istic behavior of the overall kinetics. These two terms are also
correlated with the parameter for ‘‘stochasticity,’’ �, and the
parameter for ‘‘irreversibility,’’ �. A system in a steady state far
from equilibrium, strongly driven with large � (k2nB �� k1nA),
will have a smaller thermal fluctuations in relative terms.
Irreversibility, which is necessary for oscillatory kinetics, can
suppress thermal fluctuations and make even a biochemical

system with few reactant molecules behave as a deterministic
system. We believe that this property, which is different from the
law of large numbers, will be significant for biological signal
transduction and error correction.

Mesoscopic NESS and Macroscopic Biochemical Oscillation
The Brownian motion model from the preceding section for the
stochastic kinetics of biochemical reaction 1 provides the fol-
lowing picture: the ‘‘Brownian particle’’ (nx, ny)(t) moves sto-
chastically in a two-dimensional space, with its probability
distribution, Pss(nx, ny), being the steady-state solution to Eq. 6.
However, there are several essential differences between this
‘‘Brownian particle’’ in force field F (Eq. 7) and the usual
isotropic planar Brownian motion (31).

First, the Brownian motion is anisotropic; scalar diffusion
coefficients are replaced by a diffusion tensor D. More impor-
tantly, the Brownian particle exhibits a tendency to wind around
a center clockwise (Figs. 3 and 4). On average, this motion is
determined by a vector field J, the flux,

J � FPss � D
Pss . [8]

The stream-lines of the vector J are all circular loops, since in a
steady state �P��t 	 
�J 	 0. This is the defining character of
a NESS: in an equilibrium, J(u, v) � 0 for every (u, v) (32).

The extremum of Pss can be a maximum, a minimum, or a
saddle point. When � � 1, the stochastic kinetics shows a
unimodal distribution for Pss with its peak located approximately
at (nx

ss, ny
ss) (Fig. 5 A and B). For � � 1, however, the distribution

does not necessarily lose its unimodality (Fig. 5 C and D).
Therefore there is no obvious manifestation in the mesoscopic
system of the bifurcation seen in the corresponding macroscopic
system. The difference is only quantitative. As the number of
reactant molecules increases and � decreases, however, the
distribution loses its unimodality and so bifurcates for � � 1
(Appendix III). This is the deterministic limit of the stochastic
model.

As we have seen, the mesoscopic dynamics of a chemical
reaction with a small number of reactant molecules can be
characterized as the stochastic movement of a ‘‘random walker’’
governed both by its probability distribution P(nx, ny), which
specifies probabilistically the location of the walker, and by the
circular field J, which specifies where the walker is likely to move
(Eq. 6). Because J has zero divergence, it is a circular vector field.
When the system is mesoscopic (nx and ny small), the probability
distribution Pss(nx, ny) is not sharply peaked. Then the system can
be far enough from the fixed point (nx

ss, ny
ss) so that its circular

motion is apparent for � � 1 as well as for � � 1. When the
system is macroscopic (large nx and ny) and when � � 1, the
probability distribution Pss(nx, ny) is sharply peaked and exclu-

Fig. 2. Schematic diagram for the stochastic kinetics of a nonlinear biochem-
ical reaction (1), which exhibits macroscopic periodic oscillation. (nx, ny), the
numbers of molecules of X and Y in the system, define a phase point that
moves on the grid as a random walker. The chemical rate constants define the
rates of transition from one grid point to the next. This figure should be
compared with Fig. 1 to see the similarity between the stochastic and deter-
ministic kinetics.

Fig. 3. Two examples of stochastic trajectories (Eq. 5) for � 	 0 (Left) and � 	
3.4 (Right). The two examples correspond to those in Fig. 1. � 	 0.01. The
simulation is carried out for the Markov process by using the minimal-process
method (29).
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sively concentrated at (nx
ss, ny

ss) at which J 	 0 coincides precisely
with F 	 0 (Eq. 8: J 	 0 if 
Pss 	 F 	 0). Hence, under this
condition the circular motion of the phase point cannot be seen.

However, it can be shown that for � � 1, the distribution loses
it maximality (Appendix III), corresponding to the unstable

steady state in the macroscopic kinetics. In this case, the
macroscopic system is confined to a single loop, the limit cycle.
Pss(nx, ny) has its minimum at the unstable fixed point where,
again, is the location at which F 	 0 and 
Pss 	 0, as well as the
center around which the Brownian particle winds.

Therefore, for a sufficiently small system, the stochastic
f luctuations completely overwhelm the ‘‘deterministic’’ behavior
of its macroscopic counterpart. A microscopic system in a NESS
executes cyclic trajectories even when the macroscopic counter-
part does not oscillate. As the system increases in size and as the
effects of fluctuations decrease, however, its behavior becomes
more deterministic.

It is also interesting to point out that the microscopic stochas-
tic model for nonlinear reaction 1 immediately yields a formula
for calculating the heat dissipation of the nonlinear biochemical
reaction (33). In fact, with the stochastic model, a nonlinear
nonequilibrium thermodynamics can be developed based on the
formalism of stochastic macromolecular mechanics (33, 34).

Concentration Fluctuation and Its Time Correlation Function
We have shown that the stochastic trajectory of concentration
fluctuations (nz, ny) exhibits circular Brownian motion in a
NESS. We have further shown that the distribution function for
the Brownian motion, Pss(nx, ny), can lose its maximality and
unimodality when the macroscopic kinetics becomes oscillatory.
Both these observations are based on having simultaneous
measurements on nx(t) and ny(t). Fig. 6 shows the auto- and
cross-correlation functions between nx(t) and ny(t). Again, while
there are quantitative difference between the situations for � 	
0 and � 	 3.4, they are qualitatively the same. Note that in NESS,
the cross-correlation functions �nx(t)ny(t � �) � �ny(t)nx(t � �).
For the dynamics of an irreversible biochemical reaction system
in the mesoscopic world (1) circular motion is a necessary
characteristic of NESS even when the corresponding macro-

Fig. 4. Fluctuations in nx(t) and ny(t) correspond to the trajectories in Fig. 3.
Similar oscillations are seen for the system with � � 1 [� 	 0 (A and B)] as for
the one with � � 1 [� 	 3.4 (C and D)] although the oscillations appear slightly
more regular in the latter than the former. The data suggest the possibility
of stochastic resonance without periodic forcing in driven biochemical
reactions (42).

Fig. 5. P ss(nx, ny) for � 	 0 (A and B) and � 	 3.4 (C and D). From the contour
plots (B and D) we see that a single maximum is retained for � � 1. Both
distributions have peaks approximately at the location of the steady state in
the corresponding deterministic kinetics (Fig. 1). The calculations are based on
a 	 0.1 for A and B and a 	 0.08 for C and D. For both b 	 0.1, � 	 0.01 and
� 	 (b � a)�(b � a)3.

Fig. 6. Time correlation functions for concentration fluctuations in Fig. 4. In
A � 	 0 and in B � 	 3.4. The pairs of symbols ‘‘	,
’’ by the keys indicate the
correlation function G	
(�) 	 �n	(t)n
(t � �)��n	�n
, where 	 and 
 can be x
and y. It is seen that cross-correlation functions Gxy(�) � Gyx(�).
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scopic system shows no sign of oscillation. The circular motion
is intimately related to the circular flux balance in a NESS, in
contrast to the detailed balance in an equilibrium. Thus, circular
motions epitomize temporal irreversibility and organization.

Nature of Large Fluctuations in NESS
The statement that irreversibility can suppress thermal fluctu-
ation in a NESS seems to contradict the well-known fact that
fluctuations in NESS are larger, not smaller, than that in an
equilibrium (35, 36). A well-known biological example of large
fluctuations in NESS is the dynamic instability of microtubule
assembly driven by GTP hydrolysis (37). The present analysis
suggests an insightful resolution to this paradox. As we have
shown, with significant irreversible pumping, the biochemical
reaction can have a macroscopic oscillation, which can be
mathematically identified from the convection terms in Eq. 6,
when � 	 0. The thermal fluctuation, by definition, is the
variation around this macroscopic time-dependent oscillation
(38, 39). However, in mathematical terms, the stochastic fluctu-
ation in a stationary process is the fluctuation around its
time-independent mean. Therefore the stochastic f luctuation,
which is composed of a deterministic process with temporal
complexity and the thermal stochasticity will be large in a NESS
with severe pumping.

FCS and related methods can be used to characterize these
phenomena experimentally. In its original form FCS was applied
to both first- and higher-order chemical reaction systems, as-
suming that nonlinear systems could be analyzed in linearized
form. This was based on the assumption that spontaneous
concentration fluctuations should be small. With the recent
advance of optical methods to the single molecule level, however,
it may be important to take account of the possibility that
concentration changes corresponding to the appearance or
disappearance even of one reactant molecule could be relatively
large. The analytical approach presented here represents a first
step in this direction. In the past most FCS experiments have
been carried out by measuring the fluorescence emitted from
molecules in an open region illuminated by a laser beam. The
analysis presented here is for closed chemical reaction systems;
FCS measurements can be carried out on small closed systems.
Further work is required to extend this approach to the analysis
of FCS measurements on open systems

We shall also point out that the important distinction between
thermal fluctuations and temporal complexity is known to
physicists such as van Kampen (40) and the Tomitas (41), who
termed the nonlinear bifurcation to a limit cycle ‘‘hard mode
instability.’’ The discrete nature of chemical reactions with few
molecules gives rise to a stochastic model from first principles
and obviates the ambiguity in the phenomenological Kramer–
Moyal expansion (40). We intend to introduce this type of
nonequilibrium analysis into biochemical research. Conversely,
we hope the fluctuation measurements in biochemical reactions
will enrich the fundamental physics of ‘‘living’’ systems.

The deterministic, time-dependent process underlying the
large NESS fluctuations can be experimentally discerned. With
a sufficiently large number of measurements of the NESS
fluctuations, both Pss(nx, ny) and J(nx, ny) can be experimentally
reconstructed, and the trajectory of J with maximal probability
will then be the deterministic time-dependent process, corre-
sponding to the macroscopic kinetics. Hence, with the appear-
ance of a limit cycle or more complex kinetics, the thermal
fluctuations are in fact reduced, accompanied by an increase in
the temporal complexity of the corresponding deterministic
kinetics. This, we suspect, is the origin of self-organization in
nonlinear nonequilibrium systems (16).

Appendix I: Analysis of Deterministic Oscillatory Reaction
The ordinary differential equations (2) for the nonlinear bio-
chemical reaction (1) can be nondimensionalized with u 	 �nx,
v 	 �ny, � 	 �k3�k�1, � 	 k�1t, and become

du
d�

� a � u � u2v,
dv
d�

� b � u2v, [9]

where a 	 (k1�k�1)�k3�k�1nA, b 	 �k2�k�1nB. The pair of
equations has a steady state at uss 	 a � b, vss 	 b�(a � b)2 and
its linear relaxation kinetics determines the stability of the steady
state:

�
b � a
b � a

�a � b�2

�
2b

b � a
��a � b�2� . [10]

The determinant of the matrix (a � b)2 � 0, which means the real
parts of its two eigenvalues have the same sign. The stability of
(uss, vss), hence, is determined by the trace of the matrix, the sum
of the two eigenvalues, being negative:

b � a
b � a

� �a � b�2 � �a � b�2�� � 1� � 0, [11]

When Eq. 11 is negative—i.e., � � 1—the concentrations of X
and Y in reaction 1 approach constant values (nx

ss, ny
ss). However,

when Eq. 11 is positive—i.e., � � 1—the steady state becomes
unstable. It can be shown further (14) that the reaction does not
go to any constant nx and ny. Rather both nx and ny exhibit
periodic oscillations (Fig. 1B). In mathematical terms, a confined
set covering the unstable steady state can be found (14), and by
the Poincaré–Bendixson theorem (22) there is a limit cycle.

Appendix II: Diffusion Equation for Stochastic Kinetics
Eq. 5 describes a random walk on a two-dimensional lattice shown
in Fig. 2. It can be treated approximately as a Brownian motion in
a plane. Mathematically, if one notices that P(nx � 1, ny) �
P(nx � 1, ny) � 2�P(nx, ny)��nx, P(nx, ny � 1) � P(nx, ny � 1) �
2�P(nx, ny)��ny, P(nx � 1, ny) � 2P(nx, ny) � P(nx � 1, ny) �
�2P(nx, ny)��nx

2, etc., Eq. 5 can be approximated by a rather
complicated partial differential equation (24, 38) similar to a
diffusion equation:

�P�nx, ny, t�
�t

�
�

�nx
��k � 1nx � k1nA � k3nx

2ny�P�

�
�

�ny
��k3nx

2ny � k2nB�P�

�
1
2

�k1nA � k � 1nx � k3nx
2ny�

�2P
�nx

2

� k3nx
2ny

�2P
�nx�ny

�
1
2

�k2nB � k3nx
2ny�

�2P
�nx

2

� �k � 1 � 3k3nxny � k3nx
2�

�P
�nx

� k3�nx
2 � 3nxny�

�P
�ny

� k3�2ny � 3nx�P.

If we again introduce the nondimensional variables u, v, �, etc.
as in Appendix I, the equation will be in the compact form
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�P�u, v, ��

��
� 
 ��D
P � FP�, [12]

where u � 0 and v � 0, with ‘‘anisotropic diffusion coefficient’’
and force field

D �
�

2 �a � u � u2v � u2v
� u2v b � u2v� ,

F � �a � u � u2v � ��1
2

� 2uv � u2�2�

b � u2v � ��2uv � u2�2�
� .

[13]

� is a natural parameter for characterizing the order of the
approximation, bridging the microscopic stochastic model with
its macroscopic counterpart (9). For � 	 0, the Brownian motion
is reduced to the deterministic motion �P��� � 
�(FP) 	 0,
where F is the right-hand side of deterministic kinetic equation
9. This appendix is a specific example of the general theory of
stochastic chemical reaction, called stochastic Boltzmann equa-
tion, developed extensively by Keizer (38).

Appendix III: Brownian Motion in a Bifurcating Force Field
Here we suppose that the number of reactant molecules is
sufficiently large that the approximation in Eq. 6 is valid. The
result of this section does not apply to Fig. 5, where the number
of molecules are small. The force field in Eq. 12

F � �Fu

Fv
� � �a � u � u2v

b � u2v � [14]

does not have a potential function—i.e., no function U(u, v) such
that F 	 �
U, which can be shown by noting �Fu��v � �Fv��u.
It can be shown that with nonconservative force F Eq. 12 must
approach to a NESS (32). The probability distribution function
in the NESS, Pss(u, v), is the steady-state solution to Eq. 12.

The extremum of Pss(u, v) is located exactly at (uss, vss) where
F 	 0. To show this, we note the steady-state J in Eq. 8 satisfies

�J 	 0; hence it has closed trajectory within any small domain

containing (u*, v*) where J 	 0. Then by the Dulac theorem

�(J�Pss) 	 0 at (u*, v*), which means 
Pss 	 0 at (u*, v*) since
Pss � 0. Therefore, 
Pss 	 0, F 	 0, and J 	 0 coincide.

If we denote (u*, v*) the location of the extremum of Pss(u, v),
then in its neighborhood we have:

D�u*, v*� �
�2Pss

�u2

�2Pss

�u�v

�2Pss

�u�v
�2Pss

�v2
�

*

� Pss�u*, v*� �
�Fu

�u
�Fu

�v

�Fv

�u
�Fv

�v
�

*

� �
�Ju

�u
�Ju

�v

�Jv

�u
�Jv

�v
�

*

. [15]

In Eq. 15 the diffusion tensor D is positive definite. The

2 P-matrix, which is symmetric, determines the curvature of
Pss(u, v,) at its extremum. The 
F-matrix is the linear expansion
of the force field around (u*, v*), whose determinant is always
positive; when its trace changes sign, both its eigenvalues change
signs simultaneously. Since the trace of the 
J-matrix (last terms
in Eq. 15) is always zero, the traces of the remaining two matrices
change sign simultaneously since D and Pss are positive. The
trace of 
F-matrix determines the stability of the fixed point and
the �2P-matrix determines the curvature of function P. There-
fore, the bifurcation condition implies Pss(u*, v*) loses its
maximality. In other words, the condition for unstable steady
state in the deterministic kinetics corresponds to the Pss in the
diffusion model (6) being not unimodal. The maximum at (u*,
v*) can change to a minimum or a saddle point. If Pss(u*, v*)
becomes a minimum, then the NESS distribution Pss(u, v) is ring
modal.
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